
Tomoki Ogoshi,* Kanako Kida, and Tada-aki Yamagishi

Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

Supporting Information

ABSTRACT: A new water-soluble thermoresponsive pillar[6]arene with triethylene oxide groups was synthesized. The pillar[6]arene showed lower critical solution temperature behavior in aqueous solution. Its clouding point was photoreversibly switched based on a photoresponsive host–guest system. The trans form of an azobenzene guest formed a stable 1:1 complex with the pillar[6]arene. Complexation increased the clouding point. Irradiation with UV light induced a conformation change for the azobenzene guest from the trans to cis form, and dethreading occurred because of a size mismatch between the cis form and the pillar[6]arene cavity. This dethreading decreased the clouding point. The photoresponsive host–guest system was reversible, and the clouding point could be switched by alternating irradiation with UV or visible light. We demonstrated photoreversible reversible clear-to-turbid and turbid-to-clear transitions for the solution based on the reversible switching of the clouding point using the photosensitive host–guest system.

INTRODUCTION

Controlling nanoscale supramolecular assemblies by external stimuli is an area of intense interest in nanoscience and nanotechnology. Various external stimuli such as pH,1 oxidizing and reducing agents,2 temperature,3 and light4 can be used. Among these stimuli, light is especially useful because it works rapidly, remotely, and reversibly and does not generate undesired substances. Azobenzene derivatives are widely used as photoresponsive compounds. Their conformational changes between trans and cis forms with UV or visible light irradiation can be exploited to switch states, for example, between solid and liquid,4a sol and gel,4b–d and micelle and vesicles.4e This can be exploited to trigger shuttling of the wheel segment from one station to another in rotaxanes4f,g and supramolecular polymerizations.4h–i

Pillararenes, first reported by our group in 2008,5a are new macrocyclic hosts bridged at the para-position of the benzene moieties. As a result of their symmetrical pillar architecture and planar chirality,5e–f pillar[5]arene-based supramolecular materials5e–i have attracted a great deal of interest. One of the features of pillararenes is their high functionality.5f–h Pillararenes have many reactive sites at their rims, and the presence of functional groups at the reactive sites significantly affects their physical properties. We have synthesized a pillar[5]arene with triethylene oxide substituents (Figure 1a, 1).5f Pillar[5]arene 1 exhibited lower critical solution temperature (LCST) due to modification of 10 triethylene oxide groups. Interestingly, the clouding point (T_{cloud}) of 1 can be readily adjusted from 42 to 60 °C upon addition of didecylviologen dibromide as a guest. We used cucurbit[7]uril as a competitive host to exclude didecylviologen dibromide from the cavity of 1. T_{cloud} was reversed back to that of pristine 1 upon addition of the competitive host. All systems exhibited excellent thermoresponsive properties based on the host–guest system. However, the guest and competitive host added remained in the mixture, which made it difficult to control the LCST reversibility. In this study, light was used to control the LCST. To date, pillararenes with five (pillar[5]arenes) and six (pillar[6]arenes) units have been reported. As compared to pillar[5]arenes, the chemistry of pillar[6]arenes is not as beneficial.5b The large cavities of pillar[6]arenes should afford new functional supramolecular materials that are not accomplished in pillar[5]arene-based supramolecular materials. In this study, we synthesized a new water-soluble pillar[6]arene with 12 triethylene oxide substituents (Figure 1a, 2) and demonstrated photoreversible switching of the LCST using a photoresponsive host–guest system between the pillar[6]arene 2 and an azobenzene guest (Figure 1b, G1).

EXPERIMENTAL SECTION

Materials. All solvents and reagents were used as supplied. Compound 1 was synthesized according to a previous paper.5f

Received: September 13, 2012
Published: November 19, 2012
Article

Journal of the American Chemical Society

RESULTS AND DISCUSSION

LCST Behavior of 2. As with 1, 2 was soluble in aqueous media and showed LCST behavior. An aqueous solution of 2 at 25 °C was clear (Figure 2a) but turbid at 50 °C (Figure 2b), and became clear again when the solution was cooled to 25 °C. The LCST behavior of 1 and 2 can be attributed to the interaction of the hydrophobic groups of the pillararene backbone, which results in aggregation and separation from water at temperatures above T_{cloud}. T_{cloud} was determined by monitoring the change in transmission at 650 nm on a temperature-controlled UV–vis spectrometer (Figure 2c). Heating, T_{cloud} of 2 in 2 mM aqueous solution was 41 °C (black solid line), which is similar to T_{cloud} in 1 (42 °C, red solid line). Figure 2d shows the effect of concentration on T_{cloud}. As the concentration of 1 increased, T_{cloud} decreased (red ○), indicating that T_{cloud} depended on the concentration of 1. The trend is the same as the other molecules showing T_{cloud}. As the concentration of 2 increased, T_{cloud} of 2 also decreased (black △), which was the same as those of 1. Differences between the cyclic pentamer 1 and hexamer structures 2 were therefore independent of T_{cloud}.

Host–Guest Property of trans-G1 with 1 and 2. The cavity size of pillar[6]arenes is approximately 7.5 Å, which is larger than that of pillar[5]arenes (approximately 5.5 Å). Because of their large cavity size as compared to pillar[5]arenes, pillar[6]arenes can bind bulky hydrocarbons. We examined host–guest complexation between pillar[6]arene derivatives and 1,4-diazabicyclo[2.2.2]octane (DABCO) cations in organic media. The DABCO cation is too large to form complexes and became clear again when the solution was cooled to 25 °C. The LCST behavior of 1 and 2 can be attributed to the interaction of the hydrophobic groups of the pillararene backbone, which results in aggregation and separation from water at temperatures above T_{cloud}. T_{cloud} was determined by monitoring the change in transmission at 650 nm on a temperature-controlled UV–vis spectrometer (Figure 2c). Heating, T_{cloud} of 2 in 2 mM aqueous solution was 41 °C (black solid line), which is similar to T_{cloud} in 1 (42 °C, red solid line). Figure 2d shows the effect of concentration on T_{cloud}. As the concentration of 1 increased, T_{cloud} decreased (red ○), indicating that T_{cloud} depended on the concentration of 1. The trend is the same as the other molecules showing T_{cloud}. As the concentration of 2 increased, T_{cloud} of 2 also decreased (black △), which was the same as those of 1. Differences between the cyclic pentamer 1 and hexamer structures 2 were therefore independent of T_{cloud}.

Host–Guest Property of trans-G1 with 1 and 2. The cavity size of pillar[6]arenes is approximately 7.5 Å, which is larger than that of pillar[5]arenes (approximately 5.5 Å). Because of their large cavity size as compared to pillar[5]arenes, pillar[6]arenes can bind bulky hydrocarbons. We examined host–guest complexation between pillar[6]arene derivatives and 1,4-diazabicyclo[2.2.2]octane (DABCO) cations in organic media. The DABCO cation is too large to form complexes and became clear again when the solution was cooled to 25 °C.

Measurements. The 1H NMR spectra were recorded at 500 MHz, and 13C NMR spectra were recorded at 125 MHz with a JEOL-ECAS50 spectrometer. UV–vis absorption spectra were recorded with a JASCO V-670. For UV–vis measurements, 1 cm quartz cuvettes were used. Cloud points were determined by transmission changes (at 650 nm) of the solutions heated at 0.1 °C/min; values of the cloud points were defined as the temperature at which the transmission decreases by 50%.

2. per-Hydroxylated pillar[6]arene6d (100 mg, 0.136 mmol) was dissolved in acetone (85 mL) was added 1,4-diazabicyclo[2.2.2]octane (1.04 g, 9.13 mmol) in acetone (85 mL) was added. Sodium hydride (118 mg, 4.92 mmol) was added, and the reaction mixture was stirred. Next, excess triethylene glycol monomethyl ether mono-p-tosylate (1.04 g, 3.27 mmol) was added, and the reaction mixture was heated at 60 °C for 96 h. After removal of the solvent, the resulting solid was dissolved in methanol. The solution was poured into diethyl ether. The resulting solid was dissolved in DMF (2.5 mL) and THF (2.5 mL). Sodium hydride (118 mg, 4.92 mmol) was added, and the reaction mixture was stirred. Next, excess triethylene glycol monomethyl ether mono-p-tosylate (1.04 g, 3.27 mmol) was added, and the reaction mixture was heated at 60 °C for 96 h. After removal of the solvent, the resulting solid was dissolved in CH2Cl2. The organic layer was dried over anhydrous Na2SO4. After filtration, the solvent was evaporated to give a solid. Column chromatography (silica gel; dichloromethane:methanol = 96:4) afforded a light yellow liquid (178 mg, 0.0717 mmol; yield: 53%).

Figure 1. Chemical structures of (a) pillar[n]arenes modified with triethylene oxide groups (1, n = 5; 2, n = 6) and (b) an azobenzene guest (G1).

Figure 2. Photographs of an aqueous solution containing 2 (2 mM) at (a) 25 °C and (b) 50 °C. (c) Temperature dependence of light transmittance of 1 (2 mM, red solid line) and 2 (2 mM, black solid line) in aqueous solution. (d) Concentration dependence of the clouding point (T_{cloud}) of 1 and 2 in aqueous solution.
with pillar[5]arene derivatives, but fits in the cavity of pillar[6]arene derivatives. In organic media, the trans form of azobenzene can reside in the cavity of pillar[6]arene derivatives, but the cis form of azobenzene cannot. On the basis of these host–guest properties of the pillar[6]arene derivatives in organic media, we designed a new water-soluble guest G1, which was an azobenzene derivative with two DABCO cations at each end. Complexation of the trans form of the G1 (trans-G1) with pillar[5]arene 1 and pillar[6]arene 2 in aqueous media was studied by 1H NMR (Figure 3a–d). When trans-G1 was mixed with pillar[5]arene in D$_2$O, no new peaks or peak shifts were observed for the protons of trans-G1 (yellow peaks, H$_a$–H$_e$, Figure 3a). This indicates trans-G1 did not form a complex with 1 because pillar[5]arene 1 could not fit over the DABCO cation ends. By contrast, when trans-G1 was mixed with pillar[6]arene 2, H$_b$–H$_e$ (yellow peaks) proton peaks for trans-G1 and H$_1$–H$_3$ peaks for 2 broadened, while the H$_2$ proton signal hardly changed (Figure 3c). This indicates that the DABCO cation, methylene, and azobenzene ring containing H$_2$ were located in the cavity of pillar[6]arene 2, but the other benzene ring containing H$_1$ was outside the cavity. An additional peak was observed at about 7 ppm (Figure 3c). The peak was assigned as the complex proton peak H$_b$ by 2D exchange spectroscopy (Figure S3), and the chemical exchange was slow on the NMR time scale at 25 °C. From the integration ratio of the resonance signals from free (H$_b$) and complexed (H$_b$*) species, the stoichiometry of the 2-trans-G1 complex determined from a Job plot was 1:1 (Figure S4), and the association constant (K) for the complex was $(1.01 \pm 0.0031) \times 10^3$ M$^{-1}$ at 25 °C (Figure S5). These results confirm formation of the host–guest complex between 2 and trans-G1.

Effect of Host–Guest Complexation between 2 and trans-G1 on T_{cloud}. The effect of host–guest complexation on T_{cloud} was investigated. Upon addition of trans-G1 (8 mM) to 2 (2 mM), T_{cloud} increased from 41 to 57 °C (Figure 3e, black dashed line). K for the complex at T_{cloud} was obtained by extrapolation using van’ Hoff analysis (Figure S5). The extrapolated K at T_{cloud} (57 °C) was high ($K = (4.81 \pm 0.0029) \times 10^3$ M$^{-1}$). The increase in the T_{cloud} for 2 on addition of trans-G1 is therefore mainly caused by the host–guest complexation. Repulsive forces between the complexed cations might prevent aggregation of 2. T_{cloud} did not change when 1 was mixed with trans-G1 (Figure 3e, red dashed line). This is because no complexation occurred between 1 and trans-G1. The data also support the complexation between trans-G1 and 2, leading to the observed increase of T_{cloud}.

Photoresponsive Host–Guest Complexation System of 2 and G1. Photoisomerization of G1 in the presence and absence of pillar[6]arene 2 was investigated by 1H NMR. When the solution containing trans-G1 (Figure 4a) was irradiated with UV light (340 nm), new peaks appeared (pink peaks, H$_b$–H$_e$, Figure 4a). These peaks were assigned to the cis form of G1 (cis-G1). Yet complete isomerization did not occur. At equilibrium, the trans-G1/cis-G1 ratio was approximately 21/79, which was determined from the ratio between the proton peaks of H$_b$ (trans-G1) and H$_b$* (cis-G1). Irradiation of the mixture with visible light (436 nm) allowed recovery of trans-
G1, but not complete recovery. In the equilibrium state after irradiation with visible light, the trans-G1/cis-G1 ratio was approximately 89/11. The photoisomerization could be repeated many times (red ○, Figure 4b). The reversible photoisomerization was also observed in the presence of 2 (blue △, Figure 4b). Interaction of pillar[6]arene 2 with cis-G1 was examined by 1H NMR (Figure 5b). On addition of pillar[6]arene 2 to the solution containing G1 (trans-G1/cis-G1 = 29/71), no peak shifts were observed for the proton signals from cis-G1 (pink peaks, H_a−H_e). The data indicate no complexation between cis-G1 and pillar[6]arene 2. By contrast, the remaining small proton peaks from trans-G1 (yellow peaks, H_b−H_e) broadened. The broadening in Figure 5b was the same as that in Figure 3c. These data indicate that pillar[6]arene 2 can complex with trans-G1, but cannot complex with cis-G1 (Figure 5d). This is because trans-G1 can fit in the cavity of pillar[6]arene 2, but cis-G1 cannot. The photoisomerization from the trans to cis form leads to dethreading.

The effect of the threading/dethreading caused by alternating irradiation with UV or visible light on T_cloud was investigated (Figure 5c). When the host−guest complex of pillar[6]arene 2 and trans-G2 was irradiated with UV light (first cycle), T_cloud decreased from 57 to 52 °C. This is because the photoisomerization from the trans to cis form led to dethreading of cis-G1 from the cavity of pillar[6]arene 2. After irradiation with visible light (second cycle), T_cloud increased from 52 to 56.5 °C. Irradiation with visible light caused conversion of cis-G1 back to trans-G1, and allowed pillar[6]arene 2 complexation with trans-G1. The increases and decreases in T_cloud could be reversibly switched by alternating irradiation with UV or visible light.

On the basis of the reversible switching of T_cloud using the photosensitive host–guest system, we demonstrated photo-
responsive reversible clear-to-turbid and turbid-to-clear transitions for the solution (Figure 5e). A mixture of pillar[6]arene 2 and trans-G1 was clear at 54 °C because of the Tcloud of the complex (57 °C). With UV irradiation, the solution at 54 °C changed from clear to turbid because dethreading of cis-G1 from the cavity of pillar[6]arene 2 decreased Tcloud from 57 to 52 °C. Irradiation with visible light made the 54 °C mixture clear again because trans-G1 from photoisomerization of cis-G1 complexed with pillar[6]arene 2 and increased Tcloud (56.5 °C). The clear-to-turbid and turbid-to-clear transitions were completely reversible with alternation of UV or visible light irradiation.

CONCLUSIONS

We demonstrated photoreversible switching of LCST using a photosensitive host–guest system between a new thermoresponsive macrocyclic host pillar[6]arene and an azobenzene guest G1 in aqueous media. To the best of our knowledge, this is the first example of photoreversible LCST using a simple host–guest system, although LCST control by combination of poly(N-isopropylacrylamide) with a host molecule has been reported. The complexation increased the clouding point. With UV irradiation, the conformation of G1 changed from the trans to cis form, and the complex dissociated because of the size mismatch between the cis form of G1 and pillar[6]arene 2. Visible light irradiation reversed this so the guest could rethread through the host cavity. This photocontrollable threading/dethreading led to photoreversible switching of LCST behavior. All systems in this study exhibited excellent thermoresponsive properties based on the photosensitive host–guest system. Biocompatible oligoethylene oxide moieties made up a large part of 2, and the photoreversible switching of LCST was induced with light, which as compared to other external stimuli is relatively clean. Because of these attributes, we believe this system could be used for drug delivery.

ASSOCIATED CONTENT

Supporting Information
Characterization data, 2D EXSY, Job plot, and van’t Hoff plot. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
ogoshi@t.kanazawa-u.ac.jp

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was partly supported by the Nanotechnology Platform Program of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan, and JSPS KAKENHI 23655210 (a Grant-in-Aid for Challenging Exploratory Research).

REFERENCES

