Communication

A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor
Michael A Kienzler, Andreas Reiner, Eric Trautman, Stan Yoo, Dirk Trauner, and Ehud Y. Isacoff

J. Am. Chem. Soc., Just Accepted Manuscript • Publication Date (Web): 30 Oct 2013
Downloaded from http://pubs.acs.org on November 6, 2013

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor

Michael A. Kienzler‡, Andreas Reiner‡, Eric Trautman, Stan Yoo, Dirk Trauner*, Ehud Y. Isacoff*

Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, and Department of Chemistry and Center for Integrated Protein Science, Ludwig-Maximilians-Universitat, Munich, Butenandtstr. 5-13, 81377

Supporting Information Placeholder

ABSTRACT: Azobenzene photoswitches have become a dependable method for rapid and exact modulation of biological processes and material science systems. The requirement of ultraviolet (UV) light for azobenzene isomerization is not ideal for biological systems due to poor tissue penetration and potentially damaging effects. While modified azobenzene cores with a red-shifted cis to trans isomerization have been previously described, they have not yet been incorporated into a powerful method to control protein function: the photoswitchable tethered ligand (PTL) approach. We report the synthesis and characterization of a red-shifted PTL, L-MAG0, for the light-gated ionotropic glutamate receptor LiGluR. In cultured mammalian cells, the LiGluR+L-MAG0 system is activated rapidly by illumination with 400-520 nm light to generate a large ionic current. The current rapidly turns off in the dark as the PTL relaxes thermally back to trans. The visible light excitation and single wavelength behavior considerably simplifies use and should improve utilization in tissue.

The development of synthetic photoswitches has been a boon to researchers in the material and biological sciences due to the precise spatio-temporal control that light allows. Azobenzenes in particular have proved to be robust photoswitches that tolerate significant chemical modifications. For applications in neuroscience, we have developed a two-component approach that we refer to as chemical optogenetics. Therein, a photoswitchable tethered ligand (PTL), usually derived from an azobenzene, is covalently attached to a protein to enable its reversible activation or block in response to flashes of light. PTLs, for example when attached to neurotransmitter-gated ion channels and receptors, can be used to manipulate neuronal signaling in living cells and organisms. While they can be used like microbial opsins, which function as retinal-dependent pumps or ion channels, to excite and inhibit neuronal firing with light, they offer the unique additional advantage of targeting native transmitter systems that control synaptic strength and plasticity, which are thought to be key for circuit function and memory formation.

Figure 1. Photoswitchable tethered ligands (PTLs) enable ligand-gated ion channels to be controlled by light. (a) Cartoon showing light-gating, with a shorter wavelength inducing isomerization to cis, followed by ligand binding and channel opening, while a longer wavelength reverses the process. This can also occur thermally (k_BT). (b) Modular design of MAG (maleimide-azobenzene-glutamate) photoswitches exemplified by regular L-MAG0 (1). (c) Structure of the red-shifted PTL L-MAG0 (2).

We focus here on a family of PTLs that use the excitatory neurotransmitter glutamate as a ligand to control ionotropic or metabotropic glutamate receptors (Figure 1a). These PTLs are composed of three parts, Maleimide-Azobenzene-Glutamate (MAG), such as L-MAG0 (Figure 1b, 1), which bind...
covalently at their maleimide end to an engineered cysteine introduced into the ligand binding domain of a homotetrameric kainate receptor GluK2 (iGluR6) to generate the light-activated "LiGluR".51 Irradiation with 380 nm light isomerizes the azobenzene core from the more stable trans state to the metastable cis state. This docks the glutamate into its binding pocket and opens the channel. Irradiation at ~500 nm reverses the processes and closes the channel11. Even in cases where labeling, photoswitching, or the ligand efficacy remain submaximal, LiGluR constitutes a powerful tool for in vivo studies, as low affinity kainate receptors like GluK2 are not fully activated in many physiological conditions either (see SI). LiGluR has been used to evoke patterns of action potentials in neurons11, reproducibly inject calcium into glial cells and chromaffin cells to evoke transmitter release1111, excite specific cells for neural circuit analysis in vivo11, and restore a retinal light response and visual behavior to mice blinded by photoreceptor cell degeneration11. The literature on azobenzenes suggests increasing electron density as a strategy to red-shift the absorption and lower the energy barrier for the cis-to-trans isomerization1248. Both effects are achieved in the "amino" and "push-pull" azobenzenes. Push-pull azobenzenes are so called because one benzene ring is ortho or para substituted with an electron donating group, while the other ring is substituted with an electron withdrawing group. This both red-shifts the absorbance of the trans isomer by ~100 nm, and greatly decreases the thermal stability of the cis isomer. Initially, these concepts were applied to azobenzene cross-linkers of peptide helices12223. Additionally, diffusible photochromic ligands modified to be push-pull have been made as reversibly caged potassium channel blockers12325 and AMPA receptor agonists126, but substituted azobenzenes have not yet been tested as PTLs. Potential problems include steric hindrance to operation of the tethered ligand and slowing of thermal relaxation due to binding interaction of the PTL ligand head group. With this in mind, we designed the compound L-MAGO\textsubscript{660} (Figure 1c, 2) to obtain the advantage of the donor-acceptor red-shift, but with minimal variation to the structure so that it would resemble L-MAGO (1) as closely as possible. Modification of the acetamido-group in the 4'-position to an electron-donating tertiary amine, in conjunction with the 4-acetamido, group was expected to yield a sufficiently strong push-pull system.

The readily available industrial dye “disperse red 1” (3, scheme 1) was chosen as our azobenzene precursor. Using an Appel reaction, we converted the hydroxyl group on 3 into a bromide and in a subsequent two-step Gabriel synthesis to a free amine. The selective reduction of the aromatic nitro group with sodium sulfide yielded azo aniline 4. Protection of the more nucleophilic primary amine in 4 with a fluorenlymethoxy carbonyl (Fmoc) group, followed by amide coupling with the known pyroglutamate derivative 52, yielded the advanced intermediate 6. Deprotection of the primary amine was followed by hydrolysis of the pyroglutamate with concomitant saponification of the ethyl ester, and installation of the maleimide. Finally, acidic removal of the tert-butoxy carbonyl (Boc) protecting group provided L-MAGO\textsubscript{660} (2) as its hydrochloride salt.

As expected, changing the 4-acetamido group to a dialkylamine in 2 resulted in a strong (~100 nm) red-shift of the absorption, with a maximum at 462 nm in aqueous solution (Figure 2b). To characterize the photoswitching properties of
2. and to test its applicability as a PTL, we labeled the ionotropic glutamate receptor GluK2. For attachment we chose the position K439C where regular L-MAGo (1) acts as a highly efficient cis agonist\(^{5,11,22}\). GluK2(439C) receptors expressed on the surface of HEK293 cells were covalently labeled by incubation with the red-shifted L-MAGo\(_{460}\) (2) and excess reagent was removed by washing. Patch clamp electrophysiology was used to assess the photo-induced activation of LiGluR with covalently tethered 2.

In stark contrast to regular L-MAGo (1), which in the dark remains in its cis configuration for extended times (\(\tau = 25.5 \text{ min}^{-1}\)), red-shifted L-MAGo\(_{460}\) (2) relaxes back to trans to close the channel on a much shorter timescale when the light is turned off (\(\tau_{\text{mean}} = 0.71\) s \((n = 3)\), Figure 3a). This shows that the thermal relaxation of 2 bound to the glutamate receptor is >2,200-times faster compared to 1.

We wondered whether the broad action spectrum of 2 in the blue/green region, in combination with the minimal absorption at higher wavelengths (Figure 2b) would enable activation by white light. Indeed, we found that the unfiltered polychromatic output of our Xe-lamp light source gave a high level of activation, close to the maximal activation observed with monochromatic 445 nm light (Figure 3b). A final important feature is that LigluR-2 maintains fidelity over hundreds of switching cycles (Figure S2).

Thus, LiGluR-2 acts as a single-wavelength photoswitch that supports repeated activation with pulses of light and can be activated by either narrow bands of light or light sources with broad emission spectra. It needs no illumination to be deactivated and deactivates rapidly enough to match the time course of many signaling events. These properties make 2 a versatile PTL, which maintains the same molecular specificity as 1 for genetically engineered glutamate receptors.

In summary, we report what is to our knowledge the synthesis of the first PTL with a red-shifted azobenzene core. L-MAGo\(_{460}\) (2) operates as a potent photoswitch for LiGluR that is made from the calcium permeant, excitatory kainate receptor GluK2. It generates large and reproducible currents when irradiated with blue-green light and spontaneously turns off in the dark. This fast spontaneous deactivation is an important functional feature that could be generally applicable to PTLs with low-affinity ligands. The red-shift and single wavelength dependence should enable deeper penetration in brain tissue, while minimizing photo-toxicity and achieving

Figure 2. (a) Representative action spectrum showing the activation of LiGluR+2 with visible light. (b) Comparison of the absorption spectra of 1 and 2 (in phosphate buffered saline, pH 7.4) and the LiGluR+2 action spectrum (as in (a)) obtained from voltage-clamp recordings (mean ± SEM, \(n = 4\)).

Illumination with blue light readily induced channel opening, resulting in large inward currents (Figure 2a). This demonstrates that excitation of L-MAGo\(_{460}\) (2) significantly populates its cis configuration and that the structural modification at the 4’-position of the azobenzene does not impede ligand-binding or the closure of the ligand binding domain that is required for the channel to activate and open. Varying the irradiation wavelength allowed us to record an action spectrum, which shows a broad plateau between 440-480 nm, along with some activation by green light. The degree of LiGluR+2 activation across the spectrum closely follows the absorption spectrum of the trans form (Figure 2b). The exception to this agreement was at the peak at 445 nm—a difference that may reflect the polarity of the local environment surrounding L-MAGo\(_{460}\) (2) once it has covalently bound to LiGluR. Polar solvents often red-shift the absorbance of azobenzenes\(^7\), as we indeed observed with L-MAGo\(_{460}\) (Figure S1).

Figure 3. (a) Activation by 445 nm light and fast thermal relaxation in the dark (\(\tau_{\text{mean}} = 0.71\) s \((n = 3)\)). (b) Activation by 445 nm light, unfiltered white light and 500 nm light.

In stark contrast to regular L-MAGo (1), which in the dark remains in its cis configuration for extended times (\(\tau = 25.5 \text{ min}^{-1}\)), red-shifted L-MAGo\(_{460}\) (2) relaxes back to trans to close the channel on a much shorter timescale when the light is turned off (\(\tau_{\text{mean}} = 0.71\) s \((n = 3)\), Figure 3a). This shows that the thermal relaxation of 2 bound to the glutamate receptor is >2,200-times faster compared to 1.
control with only one light source. An exciting future application will be to build on the demonstration that LiGlUR+ restores light sensitivity to the retina in a mouse model that causes photoreceptor degeneration. The broad excitation at visible wavelengths, coupled to the spontaneous turning off in the dark, suggest that L-MAG0₄₆₀, which has an activation spectrum similar to blue cone photoreceptors (S-cones), is the better photoswitch for this application. Finally, due to the inherent modularity in the synthesis of MAG-type PTLs, other variants with this red-shifted azobenzene core should be straightforward to synthesize. Indeed, since PTLs attach to the surface of the signaling protein it makes sense that they would be tolerant to substitutions that can tune their spectral and kinetics properties, offering a direct and rational approach to modify protein function. This will provide a valuable expansion of the chemical optogenetic toolkit for the remote control of ion channels and cellular signaling cascades.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures, characterization for compounds, methods of receptor transfection, and illumination protocols.

This material is available free of charge via the Internet at pub.acs.org.

AUTHOR INFORMATION

Corresponding Authors

*ehud@berkeley.edu and dirk.trauner@lmu.de

Author Contributions

†These authors contributed equally.

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENTS

This work was supported by a Deutsche Forschungsgemeinschaft grant (FOR 1279; D.T.) and postdoctoral fellowship (DFG RE3101/1; A.R.) and the National Institutes of Health Nanomedicine Development Center for the Optical Control of Biological Function (PN2EY018241; D.T. and E.Y.I.) and an NRSA postdoctoral fellowship (F32EY022840; M.A.K.).

REFERENCES
