Please use a browser supporting java script. News Research Member list Group Photo Original papers Reviews Journal Covers Equipment Position Contact
HOME > What's New    
November, 2017

Our recent article on driving and photo-regulation of myosin-actin motors with photoresponsive high energy molecules was featured in the inside cover page of Organic and Biomolecular Chemistry journal.


It is a hot field to make natural molecular motors, namely motor proteins, applicable to nanotechnology especially nano-transportation. In order to accomplish such an application it is important to precisely regulate the motile function of natural motor proteins at molecular and macroscopic scales. In the present work we first confirmed that photo-responsive non-nucleoside triphosphates (AzoTP and its analogues) instead of the original energy molecule adenosine triphosphate (ATP) could drive myosin, one of motor proteins in our body. Furthermore we could control the driving velocity of the molecular motor reversibly by the photoisomerization of an azobenzene group in the non-nucleoside molecule. We also demonstrated the photo-regulation of muscle fibers containing myosin-action motor system using the fore mentioned non-nucleoside molecule. These demonstrations became possible by our original design of the energy molecule where the base aromatic and the ribose units in ATP were exchanged with azobenzene and some linkers, respectively. We believe the present work not only accelerate the progress of the study of soft molecular machines, but also provide a new tool for the study of the mechanism of motor functions of motor proteins. An illustration summarizing our present accomplishment was used as an inside cover of the issue where our article is included of Organic and Biomolecular Chemistry.

Halley M. Menezes, Md. Jahirul Islam, Masayuki Takahashi and Nobuyuki Tamaoki "Driving and photo-regulation of myosin-actin motors at molecular and macroscopic levels by photo-responsive high energy molecules"
Org. Biomol. Chem., 2017, 15, 8894-8903

November, 2016

Single microtubule manipulation by light became possible .



Constructing molecular machines with controllable movements has been an important goal in chemistry and nanotechnology and the pioneers in this field have been recognized with the Nobel Prize in Chemistry this year. Molecular machines will most likely be used in nanomedicine and the development of things such as new materials, sensors and energy storage systems. One way to construct useful molecular machines is to combine natural molecules ? such as proteins or DNAs in our body ? with synthetic molecules in order to control the functions of the natural molecules. Building on previous work that allowed to achieve complete control over ON/OFF switching of the movement of a nanomachine, we developed a molecular system which allows free control of the motion of single microtubules. This new work was featured as Nanotechnology Spotlight in a nanotechnology portal site, Nanowerk. The figure on the left is a schematic illustration of the transportation of single microtubule on kinesin coated surface in the presence of photoresponsive inhibitor. Under 365 nm local light irradiation selected microtubule was translocated, while almost arresting ambient microtubules under 510 nm. The movie of this event was recorded during observation on a fluorescent optical microscope.

K. R. Sunil Kumar, Ammathnadu S. Amrutha and Nobuyuki Tamaoki "Spatiotemporal control of kinesin motor protein by photoswitches enabling selective single microtubule regulations"
Lab Chip, 2016, 14, 4702-4709

July, 2016

Our recent article on the structure-property relationships of photoresponsive inhibitors of the kinesin motor was featured in the cover page of Organic and Biomolecular Chemistry journal.


Recently we demonstrated the reversible photoregulation of the kinesin motor activity using azobenzene tethered peptide (azo-peptide) composed of eleven amino acids derived from the tail domain of the kinesin (K. R. Sunil Kumar et al. ACS Nano, 2014, 8(5), 4157-4165). To know the mechanism of the photoswitchable inhibition, structure-property relationship study of the array of azo-peptides was carried out by incorporating the structural modifications at the peptide unit and at the photoresponsive unit. Our study gave the important information about the vital amino acids responsible for the inhibition, types of interactions involved in inducing the inhibition and the substituent group presenting on azobenzene exhibiting higher photoswitchability. As a result, a new, more efficient photoresponsive inhibitor of kinesin featuring relatively short peptide unit (-Arg-Ile-Pro-Lys-Ala-Ile-Arg-OH) coupled to an azobenzene unit substituted with an OMe group at the para position was obtained. This piece of work will be helpful in the molecular designing of the photoresponsive inhibitors for the applications in artificial nanotransportation systems, in the study and treatment of diseases etc. Interaction of the photoresponsive inhibitor with the kinesin motor domain and the reversible isomerization of the azo unit triggered by light are presented in this picture which was featured in the cover page of the journal 'Organic and Biomolecular Chemistry' published by Royal Society of Chemistry.

A. S. Amrutha, K. R. Sunil Kumar, K. Matsuo and N. Tamaoki "Structure-property relationships of photoresponsive inhibitors of the kinesin motor"
Org. Biomol. Chem., 2016, 14, 7202-7210

March, 2014
Complete photo-switching of a biomolecular machine was attained

In our body, molecular machines with a nano meter size are working. If we took them out from our body and artificially regulated the motile function, it would lead to the actualization of “flexible and compact machine” which is totally different from the present hard and bulky machines. We developed a new photoresponsive inhibitor for kinesin, one of natural molecular machines, and succeeded in complete ON-OFF photo-switching of the motile property of kinesin by adding the inhibitor. This work was featured as Nanotechnology Spotlights in a nanotechnology portal site, Nanowerk.

The figure on the left is a schematic drawing of photo-stimulated switching of the movement of microtubules driven by kinesin in the presence of our photoresponsive inhibitor. The movie is showing the movement of microtubules observed on a fluorescent optical microscope. During the observation, 1 sec irradiation each of UV or blue light was applied to switch the state of motility between ON and OFF. The total length of the whole observation was 5 min.

K. R. Sunil Kumar , Takashi Kamei , Tuyoshi Fukaminato , and Nobuyuki Tamaoki "Complete ON/OFF Photoswitching of the Motility of a Nanobiomolecular Machine"
ACS Nano, 2014, 8(5), 4157-4165

December, 2011
A new strategy to dynamically generate point chirality is proposed and demonstrated.

We developed a methane derivative having two identical azobenzene substituents and demonstrated that detectable point chirality was generated and ceased upon photo-induced E/Z isomerization of one of the azobenzene substituents. The study may contribute to the study of the origin of enantio-pure molecules in nature and to the development of optical materials regulating polarized lights which is used for 3D displays. This work was featured in Nature Chemistry as highlight(PDF) and ChemViews Magazene as News.


P. K. Hashim, Nobuyuki Tamaoki "Induction of Point Chirality by E/Z Photoisomerization"Angew. Chem. Int. Ed., 2011, 50, 11729-11730

December, 2010
An “Invited Review Paper” was published and it was selected as one of Top25
Hottest Articles in March 2011

Our review article on the photochromic regulation of liquid crystals was published in Journal of Photochemistry and Photobiology C as an “Invited Review Paper”. The left is an included schematic drawing by Nishad, a PhD student in our lab showing the entire field of the review.

Schematic representation showing that the combination of photochromic compounds, liquid crystals and the action of light produces various dynamic functions for molecular machines, optical memories, lasers, and light modulators.

Nobuyuki Tamaoki, Takashi Kamei "Reversible photo-regulation of the properties of liquid crystals doped with photochromic compounds"J. Photochem. Photobiol. C-Photochem. Rev., 2010, 11(2-3), 47-61

March, 2010
Our paper on molecular machines was selected as one of the most accessed articles

Our recent paper on molecular machines (Meethale C. Basheer, Yoshimi Oka, Manoj Mathews, Nobuyuki Tamaoki A Light-Controlled Molecular Brake with Complete ON-OFF Rotation [Full Paper] Chem.Eur.J., DOI:10.1002/chem.200902123(Early View))was selected as one of the most accessed article in Feb,2010. among all articles published in Chemistry - A European Journal ( Details are shown in the Wiley's web site)

November, 2008
First planar chiral azobenzene made liquid crystals photo-tunable in full-color range

We synthesized a planar chiral azobenzene, which induces chiral nematic phase in commercially available nematic liquid crystals and the change in the reflection color of the thin film of the chiral nematics from blue to red via green by ultra violet light and vice versa by visible light. Our achivement is featured as a highlight in Nature's web site.

M. Mathews and N. Tamaoki, "Planar Chiral Azobenzenophanes as Chiroptic Switches for Photon Mode Reversible Reflection Color Control in Induced Chiral Nematic Liquid Crystals. J. Am. Chem. Soc., 2008, 130, 11409-11416

January, 2008
Our new photochromic compounds now on sale!


A Japanese chemicals company, Tokyo Chemical Industry (TCI), started selling our newly developed photochromic compounds as reagents for laboratory experiments.
(Catalogue number: D3618, D3619)

The compounds having a unique spiro perimidine structure reversibly change their color between pale yellow in the closed form and dark brown (or dark blue) in the open form by the action of lights. Since the photochemically generated open form shows the wide absorption covering whole visible region, they have a potential for the application to the automatic light intensity regulator. The free amino group in the compound makes it possible to be modified in the chemical structure or to be introduced in polymer chains.

1. R. Davis, N. Tamaoki, "Novel Photochromic Spiroheterocyclic Molecules via Oxidation of 1, 8- Diaminonaphthalene", Org. Lett., 2005, 7, 1461-1464.

2. R. Davis, N. Tamaoki, "Modulation of Unconventional Fluorescence of Novel Photochromic Perimidine Spirodimers", Chem. Eur. J., 2007, 13, 626-631.

June, 2007
Our study made the cover of Advanced Functional Materials.
Our article on phtorespnonseive azobenzane peptides was published in Adv. Funct. Mater. that featured our work in the cover pictureof the issue.
(Vol. 17, 2007)
Y. Matsuzawa, K. Ueki, M. Yoshida, N. Tamaoki, T. Nakamura, H. Sakai, M. Abe
"Assembly and Photoinduced Organization of Mono- and Oligopeptide Molecules Containing an Azobenzene Moiety"
Adv. Func. Mater., 2007, 17, 1507-1514
January, 2007
We succeeded in the synthesis of conjugated polyenes showing efficient monomeric fluorescence in solid state.

Our work was introduced in Noteworthy Chemistry of the ACS's web site

Yoriko Sonoda, Midori Goto, Seiji Tsuzuki, and Nobuyuki Tamaoki "Fluorescence Spectroscopic Properties and Crystal Structure of a Series of Donor−Acceptor Diphenylpolyenes"
J. Phys. Chem. A., 2006, 110, 13379-13387
September, 2006
Our study was highlightend in a British journal "Chemistry & Industry"

Our paper on the cholestric liquid crystal with cholesterol and butadiene moieties responding to light and temperature was introduced in the "Highlights"of
Chemistry & Industry(full article)
*This study was done on the joint
research with Dr. Suresh Das from
Regional Research Laboratory in India under India (DST)-Japan (JSPS) Joint Research Program.

Shibu Abraham, V. Ajay Mallia, K. Vijayaraghavan Ratheesh, Nobuyuki Tamaoki, and Suresh Das,
"Reversible Thermal and Photochemical Switching of Liquid Crystalline Phases and Luminescence in Diphenylbutadiene-Based Mesogenic Dimers"
J. Am. Chem. Soc., 2006, 128, 7692-7698
June, 2006
We have achieved the synthesis of cholesteric semiconductors and the first
observation of electronic carrier transport in their fluidic cholesteric phase.

This study was introduced in the papers below,

22/06/2006 Nikkei Business Daily
22/06/2006 Nikkan Kogyo Shinbun
22/06/2006 The Chemical Daily
07/07/2006 The Science News
26/07/2006 The Semiconductor Industry News

M. Funahashi and N. Tamaoki,
"Electronic conduction in the chiral nematic phase of the oligothiophene derivative"
ChemPhysChem, 2006, 7, 1193-1197
August, 2004
Our work was introduced in "Heart Cut" of the ACS's web site.
Our work on "photoresponsive Molecular Hinge" was introduced in "Heart Cut" of the ACS's web site
Yasuo Norikane and Nobuyuki Tamaoki,
"Light-Driven Molecular Hinge: A New Class of Molecular Machine Having a Nonlinear Photoresponse that Utilizes the Trans-Cis Isomerization of Azobenzene"
Org. Lett., 2004, 6, 2595-2598
February, 2004
Our material made the cover of Chemical Society Reviews.
Our review atricle on chiral dimesogens was published in Chem. Soc. Rev., that featured our materials in the cover picture of the issue.
V. Ajay Mallia, Nobuyuki Tamoaki,
"Design of chiral dimesogens containing cholesteryl groups forming new molecular organizations and their application to molecular photonics"
Chem. Soc. Rev., 2004, 33, 76-84